Exciton localization on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>p</mml:mi><mml:mo>−</mml:mo><mml:mi>i</mml:mi><mml:mo>−</mml:mo><mml:mi>n</mml:mi></mml:mrow></mml:math> junctions in two-dimensional crystals

نویسندگان

چکیده

We consider a neutral exciton localized on model p-i-n junction defined in two-dimensional crystal: MoSe$_2$ and phosphorene, using variational approach to the effective mass Hamiltonian. The non-homogeneous electric field at prevents separation of center mass. solution provides density real space accounts for kinetic energy due localization. For low values potential step across junction, occupies an area which is much larger than nominal range remains essentially insensitive value step. Localization within accompanied by appearance dipole moment induced local field. becomes linear function only when sufficiently large. In consequence, dependence non-parabolic. demonstrate that gets not exactly but side more energetically favourable heavier carrier: electron or hole.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exciton Band Structure in Two-Dimensional Materials.

Low-dimensional materials differ from their bulk counterparts in many respects. In particular, the screening of the Coulomb interaction is strongly reduced, which can have important consequences such as the significant increase of exciton binding energies. In bulk materials the binding energy is used as an indicator in optical spectra to distinguish different kinds of excitons, but this is not ...

متن کامل

Photoluminescence in two-dimensional crystals

Two-dimensional (2D) crystals derived from layered structures exhibit a unique set of properties as elegantly demonstrated for graphene. Semiconducting 2D structures such as MoS2 sheets are attractive building blocks for novel electronic and optoelectronic devices. In this talk, I will report photoluminescence properties of group 6 transition metal dichalcogenide (TMD) 2D crystals and discuss h...

متن کامل

Two-Dimensional Photonic Crystals

This research investigates the use of two-dimensional (2D) photonic crystals (PhC) as selective emitters and means of achieving higher efficiencies in combustion-driven thermophotovoltaic (TPV) systems intended as auxiliary power systems in automobiles. A TPV power conversion system functions on the principle of direct conversion of thermal radiation into electricity. A basic TPV system consist...

متن کامل

Two-dimensional atomic crystals.

We report free-standing atomic crystals that are strictly 2D and can be viewed as individual atomic planes pulled out of bulk crystals or as unrolled single-wall nanotubes. By using micromechanical cleavage, we have prepared and studied a variety of 2D crystals including single layers of boron nitride, graphite, several dichalcogenides, and complex oxides. These atomically thin sheets (essentia...

متن کامل

Two-dimensional tunable photonic crystals

We call a photonic crystal tunable if its spectrum can be altered by an external electric or magnetic field. One of the two constitutive components of the proposed periodic composite structure has either electric permittivity or magnetic permeability dependent on the external electric or magnetic field. Consequently, the electromagnetic spectrum of the photonic crystal can be altered over a wid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical review

سال: 2022

ISSN: ['0556-2813', '1538-4497', '1089-490X']

DOI: https://doi.org/10.1103/physrevb.106.085305